本文目录一览:
- 1、酵母菌保存方法
- 2、酵母菌的拼音
- 3、酵母菌属于什么菌
- 4、酵母菌的形态和结构特点
- 5、酵母菌的形态和结构特点
- 6、酵母菌的生殖方式?
- 7、怎么区分酵母菌和细菌啊?
- 8、酵母菌在培养基上的形态(酵母菌的形态特点)
- 9、酵母菌是什么?
酵母菌保存方法
1、酵母最适合的存放是在0-4℃冷藏,因为0-4℃酵母处于休眠状态,只有缓慢的代谢来维持生命。鲜酵母在0-4℃条件下可存放45天—60天。
2、如果存放温度低于0℃,由于鲜酵母含70%左右的水,鲜酵母会开始结冰,酵母会停止代谢逐渐死亡,导致酵母逐渐失活,发面速度逐渐变慢。
3、冷冻使水结冰后还会将酵母细胞壁胀破,酵母受到损伤,过多的水结成冰块后还会使酵母块周边鼓起来,化冻后酵母变软没弹性、严重的变成稀糊状,酵母彻底死亡,不能发面。
4、如果存放温度高于5℃,鲜酵母开始复苏,若存放温度过高,酵母代谢旺盛,老化加快,活酵母减少,发面速度变慢甚至不发面。酵母死亡后成了营养丰富的培养基,会生长霉菌。
酵母菌的拼音
酵母菌拼音:jiào mǔ jūn。
酵母,是基因克隆实验中常用的真核生物受体细胞,培养酵母菌和培养大肠杆菌一样方便。酵母克隆载体的种类也很多。酵母菌也有质粒存在,这种2μm 长的质粒称为2μm 质粒,约6 300bp。这种质粒至少有一段时间存在于细胞核内染色体以外。
利用2μm 质粒和大肠杆菌中的质粒可以构建成能穿梭于细菌与酵母菌细胞之间的穿梭质粒。酵母克隆载体都是在这个基础上构建的。酵母是一种单细胞真菌,并非系统演化分类的单元。一种肉眼看不见的微小单细胞微生物,能将糖发酵成酒精和二氧化碳,分布于整个自然界。
是一种典型的异养兼性厌氧微生物,在有氧和无氧条件下都能够存活,是一种天然发酵剂。一般泛指能发酵糖类的各种单细胞真菌,可用于酿造生产,也可为致病菌——遗传工程和细胞周期研究的模式生物。酵母菌是人类文明史中被应用得最早的微生物。
已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过出芽生殖来繁殖的称为不完全真菌,或者叫“假酵母”(类酵母)。
已知极少部分酵母被分类到子囊菌门。酵母菌在自然界分布广泛,主要生长在偏酸性的潮湿的含糖环境。2018年2月,酵母长染色体的精准定制合成荣获科技部2017年度中国科学十大进展。
酵母菌属于什么菌
酵母菌是一些单细胞真菌,并非系统演化分类的单元。酵母菌是人类文明史中被应用得最早的微生物。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。目前已知大部分酵母被分类到子囊菌门。酵母菌在自然界分布广泛,主要生长在偏酸性的潮湿的含糖环境中,例如,在水果、蔬菜、蜜饯的内部和表面以及在果园土壤中最为常见。 [编辑本段]【生理】 酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。
C6H12O6(葡萄糖)→2C2H5OH(酒精)+2CO2↑
在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。
在有氧气的环境中,酵母菌将葡萄糖转化为水和二氧化碳,例如,我们吃的馒头、面包都是酵母菌在有氧气的环境下产生膨胀的。 [编辑本段]【化学元素组分】 酵母的化学组成与培养基、培养条件和酵母本身所处的生理状态有关。
一般情况下:
酵母细胞的平均元素组成(%)如下:
碳-47 氢-6.5 氧-31 氮-7.5~10 磷-1.6~3.5
其他元素的含量很少(%)
钙-0.3~0.8 钾-1.5-2.5 镁--0.1~0.4 钠-0.06-0.2 硫-0.2
在酵母中发现的微量元素(mg/kg)
铁--90-350 铜:20-135 锌:100-160 钴:15-65 [编辑本段]【特征】 分离
多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。酵母菌是单细胞真核微生物。酵母菌细胞的形态通常有球形、卵圆形、腊肠形、椭圆形、柠檬形或藕节形等。比细菌的单细胞个体要大得多,一般为1~5微米′5~20微米。酵母菌无鞭毛,不能游动。 酵母菌具有典型的真核细胞结构,有细胞壁、细胞膜、细胞核、细胞质、液泡、线粒体等,有的还具有微体。酵母菌的细胞形态酵母菌的细胞形态酵母菌细胞结构的显微照片酵母菌的菌落。
大多数酵母菌的菌落特征与细菌相似,但比细菌菌落大而厚,菌落表面光滑、湿润、粘稠,容易挑起,菌落质地均匀,正反面和边缘、中央部位的颜色都很均一,菌落多为乳白色,少数为红色,个别为黑色。 啤酒酵母的菌落红酵母的菌落各种酵母菌的菌落。 [编辑本段]【生殖】 酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子(一般是四个),在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行无性繁殖。
【酵母菌的生长条件】
营 养:
酵母菌同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质。
水 分:
像细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。
酸 度:
酵母菌能在pH 值为3-7.5 的范围内生长,最适pH 值为pH4.5-5.0。
温 度:
在低于水的冰点或者高于47℃的温度下, 酵母细胞一般不能生长,最适生长温度一般在20℃~30℃之间。
氧 气:
酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和二氧化碳。在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。 [编辑本段]【用途】 最常提到的酵母酿酒酵母(也称面包酵母)(Saccharomyces cerevisiae),自从几千年前人类就用其发酵面包和酒类,在酦酵面包和馒头的过程中面团中会放出二氧化碳。
因酵母属于简单的单细胞真核生物,易于培养,且生长迅速,被广泛用于现代生物学研究中。如酿酒酵母作为重要的模式生物,也是遗传学和分子生物学的重要研究材料。
酵母菌中含有环状DNA---质粒,可以用来作基因工程的载体。
酵母菌的形态和结构特点
分类: 教育/科学 >> 学习帮助
问题描述:
谢谢
解析:
酵母菌
单细胞真菌。一般呈卵圆形、圆形、圆柱形或柠蒙形。菌落形态与细菌相似,但较大较厚,呈乳白色或红色,表面湿润、粘稠,易被挑起。生殖方式分无性繁殖和有性繁殖。无性繁殖有芽殖和裂殖两种。解脂假丝酵母等当环境条件适宜而生长繁殖迅速时,出芽形成的子细胞尚未与母细胞分开,又长了新芽 ,形成成串的细胞,犹如假丝状,故称假丝酵母。有性繁殖产生子囊孢子。酵母菌分布很广,在含糖较多的蔬菜、水果表面分布较多,在空气土壤中较少。
酵母菌在酿造、食品、医药等工业上占有重要的地位。早在4000多年前的殷商时代,中国就用酵母菌酿酒。酵母菌的维生素、蛋白质含量高,可作食用、药用和饲料用,又是提取核苷酸、辅酶A、细胞色素C、谷胱甘肽、三磷酸腺苷等多种生化产品的原料,还可用于生产维生素、氨基酸、有机酸等。解脂假丝酵母用于石油脱蜡。少数种类的酵母菌能引起仪器腐败,如蜂蜜酵母等能使蜂蜜、果酱变质,汉逊酵母常使酒类饮料污染,也是酒精发酵工业的有害真菌。白假丝酵母可引起皮肤、粘膜、呼吸道、消化道以及泌尿系统等多种疾病
酵母菌(Saccharomyces)是真菌生物,分类上比较混乱,主要是因其形态不一所致。按J·Lodder的酵母分类学,能形成子囊孢子的属子囊菌纲的酵母菌科(Saccha romycetaceae),也称真酵母如德巴利酵母(S·Debaryomyces)。还有些酵母不形成孢子,属于不完全菌纲、苁梗孢目,隐球酵母科(Cryptococcaceae),如假丝酵母(Candidaspp)。
提起酵母菌这个名称,也许有人不太熟悉,但实际上人们几乎天天都在享受着酵母菌的好处。我们每天吃的面包和馒头就是有酵母菌的参与制成的;我们喝的啤酒也离不开酵母菌的贡献。酵母菌是人类实践中应用比较早的一类微生物,我国古代劳动人民就利用酵母菌酿酒。酵母菌的细胞里含有丰富的蛋白质和维生素,所以也可以做成高级营养品添加到食品中,或用作饲养动物的高级饲料。
酵母菌在自然界中分布很广,尤其喜欢在偏酸性且含糖较多的环境中生长,例如,在水果、蔬菜、花蜜的表面和在果园土壤中最为常见。
酵母菌一般有很高的营养价值,特别是含有较多蛋白质,很多B族维生素、核酸和矿物质,同时也能产生一些保健功能活性物质。维生素B群可控制人体的代谢功能,保持正常的神经作用。维生素B2与维生素B6对皮肤是很重要的维生素。维生素B12有防止贫血的作用,且有促进肠内维生素合成的作用,所以对肠或肝功能不强的人有增强体力的效果。 另外,有人报告,酵母菌SH2发酵培养物用凝胶层析柱G-75分析,于280nm波长处进行蛋白质洗脱分离时,发现在其中有2个蛋白质洗脱峰对干扰素效价有增强作用,进而证明此物为 *** 白(蛋白比糖为3:1),但并不是DNA或RNA。如果这一实验信息得到进一步证实,则可说明酵母菌发酵培养物有增强干扰素效价,从而有增强机体免疫功能。
近来国内出现一些以酵母为载体,补充一些微量营养素的保健食品和特殊营养食品,如富铁酵母、富硒酵母、富锌酵母等。即在生产酵母的培养基中,增加铁、锌、硒浓度,从而使酵母中含有较多的这些物质,供人食用。也可将富含某些营养物质的酵母掺入畜禽饲料,经再一步转化,产生富含某些营养素的奶、蛋、肉类。目前这类食品转移的功效物质还只限于营养素,是否可以扩展到非营养素性功能物质,这当然是人们感兴趣的问题。
酵母菌有多种繁殖方式,有人把只进行无性繁殖的酵母菌称作"假酵母",而把具有有性繁殖的酵母菌称作"真酵母"。
酵母菌的无性繁殖
芽殖:酵母菌最常见的无性繁殖方式是芽殖。芽殖发生在细胞壁的预定点上,此点被称为芽痕,每个酵母细胞有一至多个芽痕。成熟的酵母细胞长出芽体,母细胞的细胞核分裂成两个子核,一个随母细胞的细胞质进入芽体内,当芽体接近母细胞大小时,自母细胞脱落成为新个体,如此继续出芽。如果酵母菌生长旺盛,在芽体尚未自母细胞脱落前,即可在芽体上又长出新的芽体,最后形成假菌丝状。
裂殖:是少数酵母菌进行的无性繁殖方式,类似于细菌的裂殖。其过程是细胞延长,核分裂为二,细胞中央出现隔膜,将细胞横分为两个具有单核的子细胞。
酵母菌的有性繁殖
酵母菌是以形成子囊和子囊孢子的方式进行有性繁殖的。两个临近的酵母细胞各自伸出一根管状的原生质突起,随即相互接触、融合,并形成一个通道,两个细胞核在此通道内结合,形成双倍体细胞核,然后进行减数分裂,形成4个或8个细胞核。每一子核与其周围的原生质形成孢子,即为子囊孢子,形成子囊孢子的细胞称为子囊。
酵母菌的形态和结构特点
酵母菌
单细胞真菌.一般呈卵圆形、圆形、圆柱形或柠蒙形.菌落形态与细菌相似,但较大较厚,呈乳白色或红色,表面湿润、粘稠,易被挑起.生殖方式分无性繁殖和有性繁殖.无性繁殖有芽殖和裂殖两种.解脂假丝酵母等当环境条件适宜而生长繁殖迅速时,出芽形成的子细胞尚未与母细胞分开,又长了新芽 ,形成成串的细胞,犹如假丝状,故称假丝酵母.有性繁殖产生子囊孢子.酵母菌分布很广,在含糖较多的蔬菜、水果表面分布较多,在空气土壤中较少.
酵母菌在酿造、食品、医药等工业上占有重要的地位.早在4000多年前的殷商时代,中国就用酵母菌酿酒.酵母菌的维生素、蛋白质含量高,可作食用、药用和饲料用,又是提取核苷酸、辅酶A、细胞色素C、谷胱甘肽、三磷酸腺苷等多种生化产品的原料,还可用于生产维生素、氨基酸、有机酸等.解脂假丝酵母用于石油脱蜡.少数种类的酵母菌能引起仪器腐败,如蜂蜜酵母等能使蜂蜜、果酱变质,汉逊酵母常使酒类饮料污染,也是酒精发酵工业的有害真菌.白假丝酵母可引起皮肤、粘膜、呼吸道、消化道以及泌尿系统等多种疾病
酵母菌(Saccharomyces)是真菌生物,分类上比较混乱,主要是因其形态不一所致.按J·Lodder的酵母分类学,能形成子囊孢子的属子囊菌纲的酵母菌科(Saccha romycetaceae),也称真酵母如德巴利酵母(S·Debaryomyces).还有些酵母不形成孢子,属于不完全菌纲、苁梗孢目,隐球酵母科(Cryptococcaceae),如假丝酵母(Candidaspp).
提起酵母菌这个名称,也许有人不太熟悉,但实际上人们几乎天天都在享受着酵母菌的好处.我们每天吃的面包和馒头就是有酵母菌的参与制成的;我们喝的啤酒也离不开酵母菌的贡献.酵母菌是人类实践中应用比较早的一类微生物,我国古代劳动人民就利用酵母菌酿酒.酵母菌的细胞里含有丰富的蛋白质和维生素,所以也可以做成高级营养品添加到食品中,或用作饲养动物的高级饲料.
酵母菌在自然界中分布很广,尤其喜欢在偏酸性且含糖较多的环境中生长,例如,在水果、蔬菜、花蜜的表面和在果园土壤中最为常见.
酵母菌一般有很高的营养价值,特别是含有较多蛋白质,很多B族维生素、核酸和矿物质,同时也能产生一些保健功能活性物质.维生素B群可控制人体的代谢功能,保持正常的神经作用.维生素B2与维生素B6对皮肤是很重要的维生素.维生素B12有防止贫血的作用,且有促进肠内维生素合成的作用,所以对肠或肝功能不强的人有增强体力的效果.另外,有人报告,酵母菌SH2发酵培养物用凝胶层析柱G-75分析,于280nm波长处进行蛋白质洗脱分离时,发现在其中有2个蛋白质洗脱峰对干扰素效价有增强作用,进而证明此物为核蛋白(蛋白比糖为3:1),但并不是DNA或RNA.如果这一实验信息得到进一步证实,则可说明酵母菌发酵培养物有增强干扰素效价,从而有增强机体免疫功能.
近来国内出现一些以酵母为载体,补充一些微量营养素的保健食品和特殊营养食品,如富铁酵母、富硒酵母、富锌酵母等.即在生产酵母的培养基中,增加铁、锌、硒浓度,从而使酵母中含有较多的这些物质,供人食用.也可将富含某些营养物质的酵母掺入畜禽饲料,经再一步转化,产生富含某些营养素的奶、蛋、肉类.目前这类食品转移的功效物质还只限于营养素,是否可以扩展到非营养素性功能物质,这当然是人们感兴趣的问题.
酵母菌有多种繁殖方式,有人把只进行无性繁殖的酵母菌称作"假酵母",而把具有有性繁殖的酵母菌称作"真酵母".
酵母菌的无性繁殖
芽殖:酵母菌最常见的无性繁殖方式是芽殖.芽殖发生在细胞壁的预定点上,此点被称为芽痕,每个酵母细胞有一至多个芽痕.成熟的酵母细胞长出芽体,母细胞的细胞核分裂成两个子核,一个随母细胞的细胞质进入芽体内,当芽体接近母细胞大小时,自母细胞脱落成为新个体,如此继续出芽.如果酵母菌生长旺盛,在芽体尚未自母细胞脱落前,即可在芽体上又长出新的芽体,最后形成假菌丝状.
裂殖:是少数酵母菌进行的无性繁殖方式,类似于细菌的裂殖.其过程是细胞延长,核分裂为二,细胞中央出现隔膜,将细胞横分为两个具有单核的子细胞.
酵母菌的有性繁殖
酵母菌是以形成子囊和子囊孢子的方式进行有性繁殖的.两个临近的酵母细胞各自伸出一根管状的原生质突起,随即相互接触、融合,并形成一个通道,两个细胞核在此通道内结合,形成双倍体细胞核,然后进行减数分裂,形成4个或8个细胞核.每一子核与其周围的原生质形成孢子,即为子囊孢子,形成子囊孢子的细胞称为子囊.
酵母菌的生殖方式?
酵母菌是真菌中重要的类群,具有无性繁殖和有性繁殖两种繁殖方式,大多数酵母以无性繁殖为主。无性繁殖包括芽殖、裂殖和产生无性孢子,有性繁殖主要是产生子囊孢子。繁殖方式对酵母菌的鉴定极为重要。
(一)无性繁殖
1.芽殖(budding)芽殖是酵母菌最常见的繁殖方式。在良好的营养和生长条件下,酵母生长迅速,这时,可以看到所有细胞上都长有芽体,而且在芽体上还可形成新的芽体,所以经常可以见到呈簇状的细胞团。
芽体的形成过程是这样的:在母细胞形成芽体的部位,由于水解酶对细胞壁多糖的分解,使细胞壁变薄。大量新细胞物质——核物质(染色体)和细胞质等在芽体起始部位上堆积,使芽体逐步长大。当芽体达到最大体积时,它与母细胞相连部位形成了一块隔壁。隔壁的成分是由葡聚糖、甘露聚糖和几丁质构成的复合物。最后,母细胞与子细胞在隔壁处分离。于是,在母细胞上就留下一个芽痕(budscar),而在子细胞上就相应地留下一个蒂痕(birthsear)。在光学显微镜下无法直接看到酵母菌的芽痕,如果用钙荧光素(calcafluor)或樱草灵(primulin)等荧光染料染色,就可在荧光显微镜下看到它。当然若在扫描电镜下摄影,就可清晰地观察到芽痕和蒂痕的细致结构。
2.裂殖(fission)酵母菌的裂殖与细菌的二分裂相似。其过程是细胞伸长,核分裂为二,然后细胞中央出现隔膜,将细胞横分为两个相等大小的、各具有一个核的子细胞。进行裂殖的酵母菌种类很少,例如裂殖酵母属的八孢裂殖酵母等。
3.产生掷孢子等无性孢子掷孢子(ballistospore)是掷孢酵母属等少数酵母菌产生的无性孢子,外形呈肾状。这种孢子是在卵圆形的营养细胞上生出的小梗上形成的。孢子成熟后,通过一种特有的喷射机制将孢子射出。因此,如果用倒置培养皿培养掷孢酵母并使其形成菌落,则常因其射出掷孢子而可在皿盖上见到由掷孢子组成的菌落模糊镜像。
此外,有的酵母如Candidaalbicans等还能在假菌丝的顶端产生厚垣孢子
(二)有性繁殖
酵母菌是以形成子囊(ascus)和子囊孢子(ascospore)的方式进行有性繁殖的。它们一般通过邻近的两个性别不同的细胞各自伸出一根管状的原生质突起,随即相互接触、局部融合并形成一个通道,再通过质配、核配和减数分裂,形成4个或8个子核,每一子核与其附近的原生质一起,在其表面形成一层孢子壁后,就形成了一个子囊孢子,而原有营养细胞就成了子囊。
注意:酵母菌的裂殖与细菌的二分裂虽然相似,但还是存在着本质的区别。酵母菌是真核生物,存在成型的细胞核和各种细胞器。他是以无丝分裂方式营无性分裂生殖简称裂殖。
酵母菌的生殖方式分无性繁殖和有性繁殖两大类。
1、无性繁殖包括:芽殖,裂殖,芽裂。
2、有性繁殖方式:子囊孢子。
芽殖:这是酵母菌进行无性繁殖的主要方式。成熟的酵母菌细胞,先长出一个小芽,芽细胞长到一定程度,脱离母细胞继续生长,而后形成新个体。有多边出芽、两端出芽、和三边出芽。
裂殖:少数种类的酵母菌与细菌一样,借细胞横分裂而繁殖。
芽裂:母细胞总在一端出芽,并在芽基处形成隔膜,子细胞呈瓶状。这种方式很少。
子囊孢子:在营养状况不好时,一些可进行有性生殖的酵母会形成孢子(一般来说是四个),在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行有性繁殖。
扩展资料:酵母菌的有性繁殖:酵母菌是以形成子囊和子囊孢子的方式进行有性繁殖的。两个临近的酵母细胞各自伸出一根管状的原生质突起,随即相互接触、融合,并形成一个通道,两个细胞核在此通道内结合,形成双倍体细胞核,然后进行减数分裂,形成4个或8个细胞核。每一子核与其周围的原生质形成孢子,即为子囊孢子,形成子囊孢子的细胞称为子囊。
酵母菌生殖方式
酵母菌的生殖方式分无性繁殖和有性繁殖两大类。
无性繁殖包括:芽殖,裂殖,芽裂。
有性繁殖方式:子囊孢子。
芽殖:这是酵母菌进行无性繁殖的主要方式。成熟的酵母菌细胞,先长出一个小芽,芽细胞长到一定程度,脱离母细胞继续生长,而后形成新个体。有一端出芽、两端出芽、三端出芽和多端出芽。
裂殖:少数种类的酵母菌与细菌一样,借细胞横分裂而繁殖。
芽裂:母细胞总在一端出芽,并在芽基处形成隔膜,子细胞呈瓶状。这种方式很少。
子囊孢子:在营养状况不好时,一些可进行有性生殖的酵母会形成孢子(一般来说是四个),在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行有性繁殖。
1、无性繁殖包括:芽殖,裂殖,芽裂。
2、有性繁殖方式:子囊孢子。
芽殖:这是酵母菌进行无性繁殖的主要方式。成熟的酵母菌细胞,先长出一个小芽,芽细胞长到一定程度,脱离母细胞继续生长,而后形成新个体。有多边出芽、两端出芽、和三边出芽。
出芽生殖和裂殖
分为两类,分别是“有性繁殖”和“无性繁殖”。有性繁殖:在营养条件不良的环境中,一些可进行有性生殖的酵母会产生孢子,在环境适宜时才萌发,这是酵母菌进化出的对恶劣生存环境的适应能力。无性繁殖:芽殖为成熟的酵母细胞先长出一个小芽,芽体长到一定大小,与母体细胞分离独自生长成新个体。裂殖为借助细胞横分裂而繁殖。芽裂为母细胞在一端出芽,并在芽基处形成隔膜,子细胞呈瓶状。有时也只称酵母菌的无性繁殖为出芽生殖。
怎么区分酵母菌和细菌啊?
首先是酵母菌要比细菌大的多
酵母菌具有细胞核而细菌没有细胞核,只有拟核也就是核区,
如果酵母菌在进行出牙繁殖,可以清晰看到从菌体出的芽,
有些细菌具有鞭毛,而酵母菌不具有鞭毛,
最明显就是酵母有细胞核而细菌没有细胞核
而且酵母菌内有各种细胞器包括内质网、线粒体等,细菌里没有各种细胞器,虽然只有核糖体但极微小,普通光学显微镜下看不到
酵母菌和细菌是两种不同的微生物。它们在形态、生理特征和生态环境等方面都有很大的差异。
在形态上,酵母菌是单细胞真菌,通常呈圆形或卵圆形,大小在5-10微米之间。而细菌也是单细胞微生物,通常呈球形、杆状、螺旋形等,大小在0.5-5微米之间。
在生理特征上,酵母菌是革兰氏阳性真菌,可以进行无氧发酵,产生二氧化碳和乙醇等代谢产物。而细菌则是革兰氏阳性或阴性细菌,可以进行厌氧或好氧代谢,产生不同种类的代谢产物。
在生态环境上,酵母菌多生长在甜食、水果、面包、啤酒等发酵食品中,也可以在土壤、水体等环境中生长。而细菌则广泛存在于土壤、水体、动植物体内等各种环境中。
因此,通过观察微生物的形态、生理特征和生态环境等方面的差异,可以区分酵母菌和细菌。
酵母菌在培养基上的形态(酵母菌的形态特点)
1、?酵母菌的形态特征及培养性状分析。
2、酵母菌的形态及培养特性观察。
3、酵母菌在培养基上的形态描述。
4、酵母菌的形态特征结构。
1.酵母菌细胞宽度直径约2~6μm,长度5~30μm,有的则更长,个体形态有球状、卵圆、椭圆、柱状和香肠状等。
2.酵母是单细胞微生物。
3.它属于高等微生物的真菌类。
4.有细胞核、细胞膜、细胞壁、线粒体、相同的酶和代谢途经。
5.酵母无害,容易生长,空气中、土壤中、水中、动物体内都存在酵母。
6.有氧气或者无氧气都能生存。
7. 酵母是兼性厌氧生物,未发现专性厌氧的酵母,在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。
8. 多数酵母可以分离于富含糖类的环境中,比如一些水果葡萄、苹果、桃等或者植物分泌物。
9. 一些母在昆虫体内生活。
10.酵母菌是单细胞真核微生物,形态通常有球形、卵圆形、腊肠形、椭圆形、柠檬形或藕节形等,比细菌的单细胞个体要大得多,一般为1~5或5~20微米。
11. 酵母菌无鞭毛,不能游动。
12.酵母菌具有典型的真核细胞结构,有细胞壁、细胞膜、细胞核、细胞质、液泡、线粒体等,有的还具有微体。
酵母菌是什么?
酵母菌是一些单细胞真菌,并非系统演化分类的单元。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。目前已知大部分酵母被分类到子囊菌门。酵母菌主要的生长环境是潮湿或液态环境,有些酵母菌也会生存在生物体内。
生理
酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。
C6H12O6 (葡萄糖) →2C2H5OH + 2CO2
在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。
生殖
酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子,在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行无性繁殖。
酵母菌的生长条件:
营 养:酵母菌同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质.
水 分:象细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。
酸 度:酵母菌能在pH 值为3-7.5 的范围内生长,最适pH 值为pH4.5-5.0。
温 度:在低于水的冰点或者高于47℃的温度下, 酵母细胞一般不能生长,最适生长温度一般在20℃~30℃之间。
氧 气:酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和水。在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。
分离
多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。
用途
最常提到的酵母酿酒酵母(也称面包酵母)(Saccharomyces cerevisiae),自从几千年前人类就用其发酵面包和酒类,在酦酵面包和馒头的过程中面团中会放出二氧化碳。
因酵母属于简单的单细胞真核生物,易于培养,且生长迅速,被广泛用于现代生物学研究中。如酿酒酵母作为重要的模式生物,也是遗传学和分子生物学的重要研究材料。
危害
有些酵母菌对生物或用具是有害的,例如红酵母(Rhodotorula)会生长在浴帘等潮湿的家具上;白色假丝酵母(或称白色念珠菌)(Candida albicans)会生长在阴道衬壁等湿润的人类上皮组织。
1.酵母基因组组成
在酿酒酵母测序计划开始之前,人们通过传统的遗传学方法已确定了酵母中编码RNA或蛋白质的大约2600个基因〔4〕。通过对酿酒酵母的完整基因组测序,发现在12068kb的全基因组序列中有5885个编码专一性蛋白质的开放阅读框。这意味着在酵母基因组中平均每隔2kb就存在一个编码蛋白质的基因,即整个基因组有72%的核苷酸顺序由开放阅读框组成〔5〕。这说明酵母基因比其它高等真核生物基因排列紧密。如在线虫基因组中,平均每隔6kb存在一个编码蛋白质的基因〔6〕;在人类基因组中,平均每隔30kb或更多的碱基才能发现一个编码蛋白质的基因。酵母基因组的紧密性是因为基因间隔区较短与基因中内含子稀少。酵母基因组的开放阅读框平均长度为1450bp即483个密码子,最长的是位于XII号染色体上的一个功能未知的开放阅读框(4910个密码子),还有极少数的开放阅读框长度超过1500个密码子。在酵母基因组中,也有编码短蛋白的基因,例如,编码由40个氨基酸组成的细胞质膜蛋白脂质的PMP1基因。此外,酵母基因组中还包含:约140个编码RNA的基因,排列在XII号染色体的长末端;40个编码SnRNA的基因,散布于16条染色体;属于43个家族的275个tRNA基因也广泛分布于基因组中。表1提供了酵母基因在各染色体上分布的大致情况。
表1 酵母染色体简况
染色体编号
长度(bp) 基因数 tRNA基因数
I 23×103 89 4
II 807188 410 13
III 315×103 182 10
IV 1531974 796 27
V 569202 271 13
VI 270×103 129 10
VII 1090936 572 33
VIII 561×103 269 11
IX 439886 221 10
X 745442 379 24
XI 666448 331 16
XII 1078171 534 22
XIII 924430 459 21
XIV 784328 419 15
XV 1092283 560 20
XVI 948061 487 17
序列测定揭示了酵母基因组中大范围的碱基组成变化。多数酵母染色体由不同程度的、大范围的GC丰富DNA序列和GC缺乏DNA序列镶嵌组成〔5、7〕。这种GC含量的变化与染色体的结构、基因的密度以及重组频率有关。GC含量高的区域一般位于染色体臂的中部,这些区域的基因密度较高;GC含量低的区域一般靠近端粒和着丝粒,这些区域内基因数目较为贫乏〔5、8〕。Simchen等证实〔9〕,酵母的遗传重组即双链断裂的相对发生率与染色体的GC丰富区相耦合,而且不同染色体的重组频率有所差别,较小的Ⅰ、Ⅲ、Ⅳ和Ⅸ号染色体的重组频率比整个基因组的平均重组频率高。?
酵母基因组另一个明显的特征是含有许多DNA重复序列,其中一部分为完全相同的DNA序列,如rDNA与CUP1基因、Ty因子及其衍生的单一LTR序列等〔8〕。在开放阅读框或者基因的间隔区包含大量的三核苷酸重复,引起了人们的高度重视。因为一部分人类遗传疾病是由三核苷酸重复数目的变化所引起的。还有更多的DNA序列彼此间具有较高的同源性,这些DNA序列被称为遗传丰余(genetic redundancy)〔8、10〕。酵母多条染色体末端具有长度超过几十个kb的高度同源区,它们是遗传丰余的主要区域,这些区域至今仍然在发生着频繁的DNA重组过程。遗传丰余的另一种形式是单个基因重复,其中以分散类型最为典型,另外还有一种较为少见的类型是成簇分布的基因家族。成簇同源区(cluster homology region,简称CHR)是酵母基因组测序揭示的一些位于多条染色体的同源大片段,各片段含有相互对应的多个同源基因,它们的排列顺序与转录方向十分保守,同时还可能存在小片段的插入或缺失。这些特征表明,成簇同源区是介于染色体大片段重复与完全分化之间的中间产物,因此是研究基因组进化的良好材料,被称为基因重复的化石〔5、8〕。染色体末端重复、单个基因重复与成簇同源区组成了酵母基因组遗传丰余的大致结构。研究表明,遗传丰余中的一组基因往往具有相同或相似的生理功能,因而它们中单个或少数几个基因的突变并不能表现出可以辨别的表型,这对酵母基因的功能研究是很不利的。所以许多酵母遗传学家认为,弄清遗传丰余的真正本质和功能意义,以及发展与此有关的实验方法,是揭示酵母基因组全部基因功能的主要困难和中心问题。
2.酵母基因组分析
在酵母基因组测序以前,人们已知道在酵母和哺乳动物中有大量基因编码类似的蛋白质〔11〕。对于一些编码结构蛋白质(如核糖体和细胞骨架中的)在内的同源基因,人们并不感到意外。但某些同源基因却出乎人们意料,如在酵母中发现的两个同源基因RAS1和RAS2与哺乳动物的H-ras原癌基因高度同源。酵母细胞如同时缺乏RAS1和RAS2基因,呈现致死表型。在1985年,首次应用RAS1和RAS2基因双重缺陷的酵母菌株进行了功能保守性检测,结果表明,当哺乳动物的H-ras基因在RAS1和RAS2基因双重缺陷的酵母菌株中表达时,酵母菌株可以恢复生长。因此,酵母的RAS1和RAS2基因不仅与人类的H-ras原癌基因在核苷酸顺序上高度同源,而且在生物学功能方面保守。
随着整个酵母基因组测序计划的完成,人们可以估计有多少酵母基因与哺乳动物基因具有明显的同源性。Botstein等将所有的酵母基因同GenBank数据库中的哺乳动物基因进行比较(不包括EST顺序),发现有将近31%编码蛋白质的酵母基因或者开放阅读框与哺乳动物编码蛋白质的基因有高度的同源性〔12〕。因为数据库中并未能包含所有编码哺乳动物蛋白质的序列,甚至不能包括任何一个蛋白质家族的所有成员,所以上述结果无疑会被低估。酵母与哺乳动物基因的同源性往往仅限于单个的结构域而非整个蛋白质,这反映了在蛋白质进化过程中功能结构域发生了重排。在酵母5800多个编码蛋白质的基因中,约41%(~2611个)是通过传统遗传学方法发现的,其余都是通过DNA序列测定所发现。约有20%酵母基因编码的蛋白质与其它生物中已知功能的基因产物具有不同程度的同源性(其中约6%表现出很强的同源性,约12%表现出稍弱的同源性),从而能初步推测其生物学功能。酵母基因组中有10%基因(约653个)与其它生物中功能未知的蛋白质的基因具有同源性,被称为孤儿基因对或孤儿基因家族(orphan pairs or family);约25%的基因(~1544个)则与所有已发现的蛋白质的基因没有同源性,属首次发现的新基因,是真正意义上的孤儿基因〔5、13〕。这些孤儿基因的发现是酵母基因组计划的重要收获,对于其功能的阐明,将大大推进对酵母生命过程的认识,因而引起了众多遗传学家的重视。
为了系统地分析酵母基因组测序发现的3000多个新基因的功能,1996年1月,随着DNA测序工作的结束,欧洲建立了名为EUROFAN(European Functional Analysis Network)的研究网络。这一网络由欧洲14个国家的144个实验室组成,它包括服务共同体(service consortia,A1-A4)、研究共同体(research consortia,B0?B9)和特定功能分析部(specific functional analysis nodes,N1-N14)三部分,每个部分下设许多小的分支机构。其中研究共同体中的B0部门负责制作特定的酵母基因缺失突变株。缺失突变株的制作采用新发展起来的PCR介导的基因置换方法进行,即将来自细菌的卡那霉素抗性基因(KanMX)与线状真菌Ashbya gossypil的启动子和终止序列构建成表达单元,它可赋予酵母细胞G418以抗性。然后,根据所要置换的染色体DNA序列设计PCR引物,这些引物的外侧与染色体DNA序列同源,内侧则保证通过PCR可以扩增出KanMX基因,PCR产物直接用于基因置换操作〔14〕。通过这项技术,可以有目的地将新发现的基因用KanMX置换,造成基因缺失突变,随后通过系统地研究这些酵母缺失突变株表型有无改变(如生活力、生长速度、接合能力等)以确定这些基因的功能〔15〕。此种方法中有两个方面的问题限制实验进程:其一是大部分的突变子(60%~80%)并不显示明显的突变表型,这往往与前面提到的遗传丰余有关;其二是许多突变子即使发生了表型改变,也不能反映其编码蛋白质的功能,如某些突变子不能在高温或高盐的环境中生长,但这些表型却不能提示任何有关缺失蛋白质在生理功能方面的信息。
3.酵母作为模式生物的作用
酵母作为高等真核生物特别是人类基因组研究的模式生物,其最直接的作用体现在生物信息学领域。当人们发现了一个功能未知的人类新基因时,可以迅速地到任何一个酵母基因组数据库中检索与之同源的功能已知的酵母基因,并获得其功能方面的相关信息,从而加快对该人类基因的功能研究。研究发现,有许多涉及遗传性疾病的基因均与酵母基因具有很高的同源性,研究这些基因编码的蛋白质的生理功能以及它们与其它蛋白质之间的相互作用将有助于加深对这些遗传性疾病的了解。此外,人类许多重要的疾病,如早期糖尿病、小肠癌和心脏疾病,均是多基因遗传性疾病,揭示涉及这些疾病的所有相关基因是一个困难而漫长的过程,酵母基因与人类多基因遗传性疾病相关基因之间的相似性将为我们提高诊断和治疗水平提供重要的帮助。
酵母作为模式生物的最好例子体现在那些通过连锁分析、定位克隆然后测序验证而获得的人类遗传性疾病相关基因的研究中,后者的核苷酸序列与酵母基因的同源性为其功能研究提供了极好的线索。例如,人类遗传性非息肉性小肠癌相关基因与酵母的MLH1、MSH2基因,运动失调性毛细血管扩张症相关基因与酵母的TEL1基因,布卢姆氏综合征相关基因与酵母的SGS1基因,都有很高的同源性(见表2)。遗传性非息肉性小肠癌基因在肿瘤细胞中表现出核苷酸短重复顺序不稳定的细胞表型,而在该人类基因被克隆以前,研究工作者在酵母中分离到具有相同表型的基因突变(msh2和mlh1突变)。受这个结果启发,人们推测小肠癌基因是MSH2和MLH1的同源基因,而它们在核苷酸序列上的同源性则进一步证实了这一推测。布卢姆氏综合征是一种临床表现为性早熟的遗传性疾病,病人的细胞在体外培养时表现出生命周期缩短的表型,而其相关基因则与酵母中编码蜗牛酶的SGS1基因具有很高的同源性。与来自布卢姆氏综合征个体的培养细胞相似,SGS1基因突变的酵母细胞表现出显著缩短的生命周期〔16〕。Francoise等研究了170多个通过功能克隆得到的人类基因,发现它们中有42%与酵母基因具有明显的同源性,这些人类基因的编码产物大部分与信号转导途径、膜运输或者DNA合成与修复有关,而那些与酵母基因没有明显同源性的人类基因主要编码一些膜受体、血液或免疫系统组分,或人类特殊代谢途径中某些重要的酶和蛋白质〔17〕。
表2 与定位克隆的人类疾病基因高度同源的酿酒酵母基因
人类疾病
人类基因
人类cDNA
GenBank登记号
酵母基因 酵母cDNA
GenBank登记号 酵母基因功能
遗传性非息肉性小肠癌 MSH2
U03911 MSH2 M84170 DNA修复蛋白
遗传性非息肉性小肠癌 MLH1 U07418 MLH1 U07187 DNA修复蛋白
囊性纤维变性 CFTR N28668 YCF1 L35237 金属抗性蛋白
威尔逊氏病 WND U11700 CCC2 L36317 铜转运器
甘油激酶缺乏症 GK L13943 GUT1 X69049 甘油激酶
布卢姆氏综合症 BLM U39817 SGS1 U22341 蜗牛酶
X-连锁的肾上腺脑白质营养不良 ALD Z21876 PAL1 L38491 过氧化物酶转运器
共济失调性毛细血管扩张症 ATM U26455 TEL1 U31331 P13激酶
肌萎缩性脊髓侧索硬化 SOD1 K00065 SOD1 J03279 过氧化物歧化酶
营养不良性肌萎缩 DM L19268 YPK1 M21307 丝氨酸/苏氨酸蛋白激酶
勒韦氏综合症 OCRL M88162 YIL002C X47047 IPP-5-磷酸酶
I-型神经纤维瘤 NF1 M89914 IRA2 M33779 抑制性的调节蛋白
随着获得高等真核生物更多的遗传信息,人们将会发现有更多的酵母基因与高等真核生物基因具有同源性,因此酵母基因组在生物信息学领域的作用会显得更加重要,这同时也会反过来促进酵母基因组的研究。与酵母相比,高等真核生物具有更丰富的表型,从而弥补了酵母中某些基因突变没有明显表型改变的不足。下面将要提到的例子正说明了酵母和人类基因组研究相互促进的关系。人类着色性干皮病是一种常染色体隐性遗传的皮肤疾病,极易发展成为皮肤癌。早在1970年Cleaver等就曾报道,着色性干皮病和紫外线敏感的酵母突变体都与缺乏核苷酸切除修复途径(nucleotide excision repair,NER)有关〔18〕。1985年,第一个NER途径相关基因被测序并证实是酵母的RAD3基因〔19〕。1987年,Sung首次报道酵母Rad3p能修复真核细胞中DNA解旋酶活力的缺陷〔20〕。1990年,人们克隆了着色性干皮病相关基因xPD,发现它与酵母NER途径的RAD3基因有极高的同源性〔21〕。随后发现所有人类NER的基因都能在酵母中找到对应的同源基因。重大突破来源于1993年,发现人类xPBp和xPDp都是转录机制中RNA聚合酶Ⅱ的TFⅡH复合物的基本组分〔22〕。于是人们猜测xPBp和xPDp在酵母中的同源基因(RAD3和RAD25) 也应该具有相似的功能,依此线索很快获得了满意的结果并证实了当初的猜测〔23〕。
酵母作为模式生物的作用不仅是在生物信息学方面的作用,酵母也为高等真核生物提供了一个可以检测的实验系统。例如,可利用异源基因与酵母基因的功能互补以确证基因的功能。据Bassett的不完全统计,到1996年7月15日,至少已发现了71对人类与酵母的互补基因,这些酵母基因可分为六个类型:
(1)20个基因与生物代谢包括生物大分子的合成、呼吸链能量代谢以及药物代谢等有关;
(2)16个基因与基因表达调控相关,包括转录、转录后加工、翻译、翻译后加工和蛋白质运输等;
(3)1个基因是编码膜运输蛋白的;
(4)7个基因与DNA合成、修复有关;
(5)7个基因与信号转导有关;
(6)17个基因与细胞周期有关。现在,人们发现有越来越多的人类基因可以补偿酵母的突变基因,因而人类与酵母的互补基因的数量已远远超过过去的统计。
在酵母中进行功能互补实验无疑是一种研究人类基因功能的捷径。如果一个功能未知的人类基因可以补偿酵母中某个具有已知功能的突变基因,则表明两者具有相似的功能。而对于一些功能已知的人类基因,进行功能互补实验也有重要意义。例如与半乳糖血症相关的三个人类基因GALK2(半乳糖激酶)、GALT(UDP-半乳糖转移酶)和GALE(UDP-半乳糖异构酶)能分别补偿酵母中相应的GAL1、GAL7、GAL10基因突变。在进行互补实验以前,人类和酵母的乳糖代谢途径都已十分清楚,对有关几种酶的活性检测法也十分健全,并已获得其纯品,可以进行一系列生化分析。随着人类三个半乳糖血症相关基因的克隆分离成功,功能互补实验成为可能,从而在遗传学水平进一步确证了人类半乳糖血症相关基因与酵母基因的保守性。人们又将这一成果予以推广,利用酵母系统进行半乳糖血症的检测和基因治疗,如区别真正的突变型和遗传多态性,在酵母中模拟多种突变型的组合表型,或筛选基因内或基因间的抑制突变等〔24〕。这些方法也同样适用于其它遗传病的研究。
利用异源基因与酵母基因的功能,还能使酵母成为其它生物新基因的筛查工具。通过使用特定的酵母基因突变株,对人类cDNA表达文库进行筛选,从而获得互补的克隆。如Tagendreich等利用酵母的细胞分裂突变型(cdc mutant)分离到多个在人类细胞有丝分裂过程中起作用的同源基因〔25〕。利用此方法,人们还克隆分离到了农作物、家畜和家禽等的多个新基因〔26〕。 为了充分发挥酵母作为模式生物的作用,除了发展酵母生物信息学和健全异源基因在酵母中进行功能互补的研究方法外,通过建立酵母最小的基因组也是一个可行的途径。酵母最小的基因组是指所有明显丰余的基因减少到允许酵母在实验条件下的合成培养基中生长的最小数目〔10、27〕。人类cDNA克隆与酵母中功能已知基因缺陷型进行遗传互补可以确定人类新基因的功能,但是这种互补实验会受到酵母基因组中其它丰余基因的影响。如果构建的酵母最小基因组中所保留的基因可以被人类或者病毒的DNA序列完全替换,那么替换后的表型将完全取决于外源基因,这将成为一种筛选抗癌和抗病毒药物的分析系统。?
4。酵母在发酵工程中的应用
单细胞真核生物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。1981年酿酒酵母表达了第一个外源基因----干扰素基因,随后又有一系列外源基因在该系统得到表达干扰素和胰岛素虽然已经利用酿酒酵母大量生产并被广泛应用,当利用酿酒酵母制备时,实验室的结果很令人鼓舞,但由实验室扩展到工业规模时,其产量迅速下降。原因是培养基中维特质粒高拷贝数的选择压力消失质粒变得不稳定,拷贝数下降。拷贝数是高效表达的必备因素,因此拷贝数下降,也直接导致外源基因表达量的下降。同时,实验室用培养基成分复杂且昂贵,当采用工业规模能够接受的培养基时,导致了产量的下降。为克服酿酒酵母的局限,1983年美国Wegner等人最先发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统。甲基营养型酵母包括:Pichia、Candida等.以Pichia.pastoris(毕赤巴斯德酵母)为宿主的外源基因表达系统近年来发展最为迅速,应用也最为广泛。毕赤酵母系统的广泛应用,原因在于该系统除了具有一般酵母所具有的特点外,还有以下几个优点:
⑴ 具有醇氧化酶AOX1基因启动子,这是目前最强,调控机理最严格的启动子之一。
⑵ 表达质粒能在基因组的特定位点以单拷贝或多拷贝的形式稳定整合。
⑶ 菌株易于进行高密度发酵,外源蛋白表达量高。
⑷ 毕赤酵母中存在过氧化物酶体,表达的蛋白贮存其中,可免受蛋白酶的降解,而且减少对细胞的毒害作用。 Pichia.pastoris基因表达系统经过近十年发展,已基本成为较完善的外源基因表达系统,具有易于高密度发酵,表达基因稳定整合在宿主基因组中,能使产物有效分泌并适当糖基化,培养方便经济等特点。利用强效可调控启动子AOX1,已高效表达了HBsAg、TNF、EGF、破伤风毒素 C片段、基因工程抗体等多种外源基因,证实该系统为高效、实用、简便,以提高表达量并保持产物生物学活性为突出特征的外源基因表达系统,而且非常适宜扩大为工业规模。
目前美国FDA已能评价来自该系统的基因工程产品,最近来自该系统的Cephelon制剂已获得FDA批准,所以该系统被认为是安全的. Pichia.pastoris表达系统在生物工程领域将发挥越来越重要的作用,促进更多外源基因在该系统的高效表达,提供更为广泛的基因工程产品。
酵母菌通过呼吸产生二氧化碳!
酵母菌是一些单细胞真菌,并非系统演化分类的单元。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。目前已知大部分酵母被分类到子囊菌门。酵母菌主要的生长环境是潮湿或液态环境,有些酵母菌也会生存在生物体内。
生理
酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。
C6H12O6 (葡萄糖) →2C2H5OH + 2CO2
在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。
生殖
酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子,在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行无性繁殖。
酵母菌的生长条件:
营 养:酵母菌同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质.
水 分:象细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。
酸 度:酵母菌能在pH 值为3-7.5 的范围内生长,最适pH 值为pH4.5-5.0。
温 度:在低于水的冰点或者高于47℃的温度下, 酵母细胞一般不能生长,最适生长温度一般在20℃~30℃之间。
氧 气:酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和水。在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。
一分钟了解酵母菌
酵母是一些单细胞真菌,并非系统演化分类的单元。一种肉眼看不见的微小单细胞微生物,能将糖发酵成酒精和二氧化碳,分布于整个自然界,是一种典型的兼性厌氧微生物,在有氧和无氧条件下都能够存活,是一种天然发酵剂。
酵母菌是一些单细胞真菌,并非系统演化分类的单元。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。目前已知大部分酵母被分类到子囊菌门。酵母菌主要的生长环境是潮湿或液态环境,有些酵母菌也会生存在生物体内。
酵母菌(yeast)广泛分布于自然界中,种类繁多,已知的就有几百种。实际上酵母菌不是一个分类学名词,而是一类单细胞真菌的统称。由于酵母菌的种类复杂、形态多样、代谢特点存在很大差异,系统进化地位也不尽相同,因此很难对其下一个确切的定义。但一般认为酵母菌具有以下几个基本特征:个体一般以单细胞状态存在;多数以出芽方式繁殖,也有的进行裂殖或产生子囊孢子;能发酵多种糖类;细胞壁常含有甘露聚糖;喜在含糖较高、酸性的环境中生长。